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Introduction 
 
According to the most general descriptions of 
the topic, the transport processes can most 
correctly be treated within framework of the 
extended irreversible thermodynamics [5]. 
The transport phenomena occuring in soils 
represent no exception. It is well-known in 
the contemporary literature of soil transport 
processes e.g. [3], that modelling of these 
processes is based frequently on the 
application of the classical advection-
dispersion equation (ADE), i.e. on of the most 
important equations of the physical kinetics, 
written here in three – dimensional form: 
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where ( ),c c r t=
�

 is the resident fluid 

concentration, t denotes time, r is distance, 
and D is the hydrodynamic dispersion 

coefficient. This equation is even today a very 
useful tool at modelling of data emanating 
from serious soil experiments e.g. those 
controlled on the base of the combined the 
mobile-immobile model with an asymptotic 
scale-dependent dispersivity models [4]. 
However, equation (1) is not always enough 
to give an accurate description of diffusion 
processes taking place in soils, because of 
their genuine mesoscopic structure. The so-
called non-classical diffusion- (characterizing 
for instance dispersion of pollutants in rivers 
and estuaries – a phenomenon known under 
the name of Taylor-dispersion [5]) and 
anomalous diffusion phenomena, which may 
appear in the case of stochastic motion of 
particles with non-Brownian character are 
good illustrations e.g. [8]. All these 
digressions from the ordinary diffusion are 
also called transport processes of non-Fickian 
character and call for serious further advances 
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in the theory of stochastic processes. In the 
forthcoming sections we will describe briefly 
and justify application of a powerful general 
formalism able to reflect nonlocal character 

and possible „memory” effects characterizing 
the genuine transport processes in the systems 
having percolative-fractal character in 
mesoscopic sense. 

 
 
Material and methods 
 
It is well-known nowadays, that investigation 
of both percolation phenomena [9] and 
systems with fractal character [10] belong to 
the rapidly advancing frontiers of 
contemporary mathematical- and statistical 
physics with numerous open research 
subdomains, whose investigation represents a 
very fruitful research topic in future. There 
are also numerous systems exhibiting both of 
the two above-mentioned features, and are 
usually called percolative-fractal (PF) 
systems. Among them, investigation the 
simultaneous convection – anomalous 
diffusion processes may also represent a 
novel-type research domain of crucial 
importance in this area [7]. Accordingly, we 

think, that only the common application of the 
powerful calculation methods emanating from 
non-equilibrium thermodynamics and 
percolation theory may provide a genuine 
background for accurate modelling of (in 
general case:) coupled transport processes 
taking place in porous media. For instance, 
this modelling strategy has been applied 
rather rarely in one of the most obvious 
research fields of the topic – in the theory of 
drying processes [6]. (It was taken into 
account in this previous study of ours, that the 
diffusion coefficient depends on difference of 
the actual (p) and critical percolation 
probability (pc) in agreement with the relevant 
scaling relationship as  

 

 

 
 
 

 

 

 

 

(a)                                                                    (b) 

Fig. 1. Scaling behaviour of the moisture level distribution in the case of coupled heat and mass transfer in porous 
medium (in relative units) for (a) ∆p = 0,001, (b) ∆p=0,002 values of the percolation probability difference after [6]. 
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then, an a posteriori refinement of the basic 
analytical solution of the general coupled 
system of parabolic-type partial differential 
equations was realized.)  Since soil columns 
represent an archetypal case of PF systems, 
their investigation from the point of view of 

newest transport theories (see e.g. [4]) may 
result in more refined descriptions of 
transport processes taking place in them, as 
well as in predicting of new types of diffusion 
phenomena. According to the key concept of 
this theory, the density distribution function 
ρ(x,t) (of the moisture content of the matter, 
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for example) obeys the following scaling relationship of general character: 

( ) ( ), ,x t t q xtµ µρ − −= ⋅                 (2) 

where µ is the scaling exponent, while q(x,t) 
is a time-, and space-dependent distribution 
function, which is not necessarily of 
Gaussian-type. If µ > ½ we speak about 
superdiffusion, while for µ < ½ the so-called 
subdiffusive processes are taking place in the 

system. In such transport processes the usual 
normal (i.e. Gaussian) form of the diffusion 
packet is not necessarily maintained and 
therefore cannot be modelled without 
additional supplementary relations, explained 
here by crucial scaling relations from the 
contemporary statistical physics. Accordingly, 
the transport equation can be written as:
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where D is the diffusion coefficient having 
positive constant value, ω is an exponent in 
the probability distribution formula relevant 
for asymptotic solution of the Montroll-Weiss 
problem [10] with possible values of ω < 1. 
The fractional partial derivative with respect 
to time is explained by use of the Riemann-
Liouville operators, i.e.: 
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where the symbol Γ as usual, denotes the 
Gamma-function and δ is Dirac’s delta - 
distribution. The operator expression 
K(x;ρ(x,t)) corresponding to the diffusion 
term on the right-hand side of (4) indicates 
general character of its, formally explained by 
a variety of different mathematical 
expressions (to be discussed below). 

  
 
By taking the fractional partial derivative of 
the order of 1 – ω of both sides of (3), and 
generalizing the transport equations to many-
dimensional case, we get: 
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where product of the Dirac’s delta-
distributions on the right-hand side describes 
the instantaneous initial – boundary 
conditions. In these equation α = 1/µ (and 
takes its possible values from the semi-closed 
interval (0,2]) and represents the characteristic 
exponent relevant for description of stable 
transport processes in PF systems. Obviously, 
taking the value α = 2 (at ω = 0) will directly 
return the classical diffusion equation. The 
fractional partial derivatives with respect to 
space coordinates can also be explained by 
Riemann-Liouville operators [1, 10]. 

Results and discussions 
 
In order to set up a realistic useful new 
mathematical model for describing moisture 
transfer in soils characterized by diffusion 
processes with non-local character and 

convection, we combine here the above-
discussed equations (1) and (5). Therefore, we 
propose here application of the following 
new-type transport equation: 
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where a generalization of the term describing 
convective motions is performed. This exten-
sion of the classical formalism is realized by 

introducing fractional gradient and Laplacian 
operators, instead of the usual ones. This 
extension can be described symbolically as:

 
 

( ) ( )/ 2 22 / 2 2 / 2 / 2.
αα α α∆ = ∇ ≡ ∇⋅∇→ ∆ = ∇ ≡ ∇ ⇒∇→∇                              (7) 

 
According to our knowledge, the formula (6) 
has not been applied in the theory of transport 
processes linked to anomalous diffusion, 
because they have not been connected so 
strongly to the scaling relations as it is done 

here. Formally, this can also be seen from 
some very serious earlier studies, e.g. [2] 
where smaller number of fractional derivation 
indices are used. 

 
 
Conclusions 
 
In the present work a new generalization of 
the classical advection – diffusion formula is 
proposed on base of the contemporary 
stochastic theory of anomalous diffusion 
processes. Since the relevant theoretical 
foundations are based on the self-similarity 

principle, the whole formalism is directly 
connected to the most confident scaling 
methods of statistical physics. The formalism 
proposed may lead to further new modelling 
research methods for describing anomalous 
transport phenomena in soils. 
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