Rapid BRAF mutation detection in melanoma patients by immunohistochemistry

László FÜLÖP¹, Katalin GÖTZER¹, Erzsébet CSERNÁK¹, Danyil Szergejevics KUZNYECOV¹ and Erika TÓTH¹*

¹National Institute of Oncology, Surgical and Molecular Pathology Center, Ráth Gy. u. 7-9, Budapest, H-1122 Hungary

*Corresponding Author; e-mail: erika66toth@gmail.com

Received: 11 March 2017 / Revised: 3 April 2017 / Accepted: 29 April 2017

Keywords: melanoma, BRAFVE1, immunohistochemistry

ABSTRACT

The V600E mutation is the most common (~90%) activating mutation of the BRAF gene. BRAF mutations have been frequently investigated in melanoma, colorectal cancer and papillary thyroid carcinoma. The importance of the detection of BRAF mutations has been rising by the routine use of Braf inhibitor therapy. We evaluated the usefulness of the BRAF V600E mutation-specific monoclonal antibody (VE1) in metastatic melanoma patients. To confirm the results of immunohistochemistry (IHC), we used COBAS 4800 BRAF V600 mutation test and PCR amplification followed by Sanger sequencing. 36 of 105 patients have wild-type BRAF gene, 64 have V600E mutation and 5 of 105 have V600K mutation. Predicting the mutation only by IHC using VE1 antibody, all 58 positively scored specimen were V600E mutant. The V600K, the wild-type patients and 7 patients from the V600E mutant group scored as negative. Thus the specificity is 100% and the positive predictive value is 1 of the IHC method. After processing our data we could establish a cheaper diagnostic algorithm for rapid detection of BRAF mutation.

Introduction

Approximately 30 connections of the BRAF gene with human cancers have been identified. (1–3% non-small-cell lung cancer [1], 5% in colorectal cancer papillary thyroid carcinoma [2], 57% of Langerhans cell histiocytosis, 100% of hairy cell leukaemia [3], ameloblastoma, papillary craniopharyngioma, high grade gliomas in children [4], Metanephric adenoma [5, 6].

Hyperactivation of growth signal is usually a key factor in the development of these malignomas. Beside the mutations affecting the first steps of the signal (GFR and Ras) about 60% of the melanomas carrying an activational mutation in the BRAF gene [6]. In 90% of the mutant cases, thymine is substituted with adenine at nucleotide 1799. This leads to valine (V) being substituted for by glutamate (E) at codon 600 (now referred to as V600E mutation).

In metastatic melanoma patients B-Raf inhibitor therapy is accepted in 2011 [7], and more selective inhibitors approved by FDA in 2013 [8]. Braf inhibitor treatment is suggested to be applied even beyond progression [7, 9].

Detection of the presence of BRAF mutation is the requirement of treatment and so in the given cases fast and reliable
mutation detection is very important. VE1 antibody recognises only V600E mutant Braf but not the wild form or other mutant variant [10]. Despite of the works demonstrating the relevance of the Braf V600E mutation specific antibody VE1 [11, 12, 13, 14, 15] it is still not accepted in the everyday routine.

Despite of the few analytical difficulties here we show a diagnostic procedure in which immunohistochemistry has a reliable role.

The importance of the VE1 antibody is highlighted by the faster diagnosis and lower procedure costs.

Material and methods

Formalin fixed paraffin embedded (FFPE) blocks of 104 metastatic melanoma patients were analyzed. Anti-BRAFV600E staining was performed on the same blocks used for molecular analysis, using the VE1 mouse monoclonal antibody (Ventana Medical Systems, Roche, CN: 790-4855) diluted 1/100.

BRAF mutation analysis

Cobas® 4800 BRAF V600 Mutation Test was performed according to manufacturer instructions (Supplementary material 1).

In house method were also used. PCR amplification with mutation specific primer followed by Sanger sequencing was performed as described before [16].

Results

We examined 104 patients with metastatic melanoma. In 50 cases analysis were made from the metastasis, and the rest of the cases were primary melanomas.

Table 1. Discordant cases in detail

<table>
<thead>
<tr>
<th>ID Number</th>
<th>IHC</th>
<th>COBA S</th>
<th>Sanger</th>
<th>percentage of tumor cells</th>
<th>Origin</th>
<th>Probable cause of negativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>negative</td>
<td>V600</td>
<td>V600E</td>
<td>80% primer tumor</td>
<td>low positivity</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>negative</td>
<td>V600</td>
<td>V600E</td>
<td>90% metastasis</td>
<td>low positivity</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>negative</td>
<td>V600</td>
<td>V600E</td>
<td>90% primer tumor</td>
<td>low positivity</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>negative</td>
<td>V600</td>
<td>V600E</td>
<td>80% metastasis</td>
<td>low positivity</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>negative</td>
<td>V600</td>
<td>V600E</td>
<td>70% primer tumor</td>
<td>low positivity</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>negative</td>
<td>V600</td>
<td>V600K</td>
<td>80% primer tumor</td>
<td>V600K</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>negative</td>
<td>V600</td>
<td>V600E</td>
<td>90% metastasis</td>
<td>low positivity</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>negative</td>
<td>V600</td>
<td>V600E</td>
<td>90% metastasis</td>
<td>high staining noise</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>negative</td>
<td>V600</td>
<td>V600K</td>
<td>80% primer tumor</td>
<td>V600K</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>negative</td>
<td>V600</td>
<td>V600K</td>
<td>80% primer tumor</td>
<td>V600K</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>negative</td>
<td>V600</td>
<td>V600K</td>
<td>>5% metastasis</td>
<td>V600K</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>negative</td>
<td>V600</td>
<td>V600K</td>
<td>80% primer tumor</td>
<td>V600K</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>negative</td>
<td>V600</td>
<td>V600E</td>
<td>80% metastasis</td>
<td>low positivity</td>
<td></td>
</tr>
</tbody>
</table>

We performed Braf IHC and COBAS 4800 V600 mutation test on all specimens, and Sanger sequencing on the discordant cases. Regarding these discordant cases COBAS and Sanger sequencing were 100% congruent. 48 patients were counted as negative and 56 as positive with Braf IHC. All the positively scored patients turned out to be BRAF mutants with COBAS. Five specimens of the 48 IHC negatively scored group had V600K mutation and 8 happened to be false negative (Figure 1). Detailed
information of the discordant cases are shown in Table 1. Representative pictures are shown in Figure 2. Age of the BRAF mutation carrying patients were significantly lower (average: 58.42 years and 66.13 years resp., p=0.005).

Discussions

In this study we further asserted the role of Braf VE1 immunohistochemistry in the diagnosis of BRAF mutations. Foremost we verified BRAF mutation status by COBAS or in house method. Discordant cases were analysed by Sanger sequencing, revealing V600K mutations in the majority of false negative cases. Since intra-observer variability was negligible the false negative cases were re-analysed.

Fig. 1. Analisis sequence. IHC: immunohistochemistry

Fig. 2. Representative pictures. A: standard hematoxilin-Eosin staining. B: True negative (negative IHC, wild type). C: True positive (positive IHC, V600 mutant). D: False negative (negative IHC, V600K mutant) E: False negative after image processing. F: Highly pigmented area, counted as negative.
This showed that true negative cases were reliably negative, but false negative cases had usually problematic IHC due to the highly pigmented areas, high background noise or very low positivity. These can highlight potential positive cases but still recommended to count as negative and perform DNA tests. So we strongly suggest BRAFVE1 immunohisto-chemistry as a primary screening method and to evaluate every negative or uncertain cases by further molecular methods.

Pre-screening melanoma with Braf VE1 IHC can shorten the time for the appropriate therapy in the majority of cases, due to the excellent positive predictive value.

References

melanoma and colorectal cancer specimens.

Tumor Biol 36:1003–1013.
doi: 10.1007/s13277-014-2711-5

doi: 10.1111/j.cup.12364

doi: 10.1016/j.humpath.2015.04.012
